skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Azoulay, Jason D"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. A point-of-use electrochemical phosphate sensor is achieved with electrodeposited mixed-valence molybdenum oxide on flexible electrodes, enabling selective detection in complex aqueous environments. 
    more » « less
    Free, publicly-accessible full text available June 2, 2026
  2. Free, publicly-accessible full text available March 26, 2026
  3. Rau, Ileana; Sugihara, Okihiro; Shensky, William M (Ed.)
    Low-energy, infrared (IR) photodetection forms the foundation for industrial, scientific, energy, medical, and defense applications. State-of-the-art technologies suffer from limited modularity, intrinsic fragility, high-power consumption, require cooling, and are largely incompatible with integrated circuit technologies. Conjugated polymers offer low-cost and scalable fabrication, solution processability, room temperature operation, and other attributes that are not available using current technologies. Here, we demonstrate new materials and device paradigms that enable an understanding of emergent light-matter interactions and optical to electrical transduction of IR light. Photodiodes show a response to 2.0 μm, while photoconductors respond across the near- to long-wave infrared (1–14 µm). Fundamental investigations of polymer and device physics have resulted in improving performance to levels now matching commercial inorganic detectors. This is the longest wavelength light detected for organic materials and the performance exceeds graphene at longer wavelengths. Photoconductors outperform their inorganic counterparts and operate at room temperature with higher response speeds. 
    more » « less
  4. Structural supercapacitors reach high performance with a gradient electrolyte and redox polymer electrodes. 
    more » « less